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Abstract :  This paper proposes LMI based robust and optimal sliding mode control (SMC) approach for stabilization of a perturbed 

Magnetic Levitation System (MAGLEV). This system levitates an object with a strong magnetic force in space against gravity and 

thus, requires a robust controller strategy which rapidly regulates the position of an object to equilibrium in-spite of various 

mismatched uncertainties such as model parametric variations and external disturbances. Therefore, this paper employs an attractive 

ellipsoid control strategy which is based on optimizing the size of an ellipsoid containing equilibrium while ensuring the 

convergence of actual position of an object in quasi-minimal zone of equilibrium in finite time. It also guarantees an effective 

reduction of chattering and faster convergence of system dynamics over the prescribed sliding surface. The optimal sliding surface 

and sliding motion are computed by solving LMIs through YALMIP and SEDUMI toolboxes in MATLAB software. Simulations 

and results are also compared with the dynamic sliding mode control (DSMC) contributed in literature. 

 

IndexTerms - Convex Optimization, Sliding Mode Control (SMC), Linear Matrix Inequalities (LMI), Attractive Ellipsoid Methodology 

(AEM), Magnetic Levitation System (MAGLEV).  

I. INTRODUCTION 

    Magnetic Levitation system (MAGLEV) is a highly unstable system that allows a ferromagnetic object to suspend in space with 

a strong magnetic force, against the pull of gravitational force. It has a practical importance in various engineering applications such 

as rail transportation, vibration isolation, suspension of metal in induction furnaces, frictionless bearings etc. In addition to this, it 

also moves object from distances without any need of contact with surface, eliminates frictionless energy losses and dampens 

vibrations. Analytically, this system is characterized by the nonlinear differential equations and requires a suitable robust control 

action for regulation of position of suspended object with accurate precision [1].  

    Many research proposals have been bestowed in published works for stabilizing the MAGLEV system namely, adaptive [1,2], 

sliding mode control (SMC) [3], linearizing control method [4], robust feedback linearization [5,6], two degree of freedom PID 

control [7],  backstepping approach [8], Linear Quadratic Regulator (LQR) [9] and higher order SMC [10]. In [11], the linear and 

non-linear state space controllers are employed for high precision positioning and non-linear observer is incorporated for its system 

states estimation. However, these linear controllers may not guarantee stability in the presence of large perturbations. Moreover, 

most of these methods are not concerned with assurance of robustness of closed loop system against time varying complex 

mismatched uncertainties which is the principal consideration of this paper. 

   SMC is considered as the best robust strategy for eliminating the impacts of complex modelling uncertainties such as un-modelled 

dynamics, model parametric variations, etc. due to its variable control structure. It has proved its effectiveness in various kinds of 

systems such as non-linear, linear, chaotic systems etc. It comprises of two parts [12]: the first part describes the continuous control 

for the sliding phase on the prescribed sliding surface. Second part reveals the discontinuous control needed to force the system 

dynamics present in state space onto the pre-defined sliding surface. Therefore the most important step in designing a control law 

is to choose a suitable sliding surface. It signifies the desired dynamics which can be tracking or regulation objectives in the sense 

of control theory [13,14]. Nevertheless, few issues faced by this robust technique have intensely attracted the large section of control 

research community. Firstly, the conventional SMC is not efficient in alleviating the impacts of mismatched uncertainties which do 

not satisfy the matching condition. This means that it can successfully deal with the matched uncertainties which penetrate through 

the input matrix of system dynamics. Moreover, the sliding phase is not at all robust to such mismatched uncertainties. Secondly, 

high frequency oscillations known as chattering in SMC caused due to high gain and finite switching frequency develop heating 

losses and excessive wear and tear of actuators and sensors [15]. Approaches such as higher order SMCs and Quasi-SMC have been 

utilized in literature which either enhance the complexity of the controller or reduce the robustness of the closed loop system, 

respectively.    

    The attractive ellipsoid methodology (AEM) is one of the powerful methods proposed for stabilizing the system against 

mismatched and matched uncertainties [16,17]. It minimizes the size of an ellipsoid that contains the equilibrium (origin). The 

system states find it attractive as they will be enforced to converge to a quasi-minimal region of equilibrium [18,19].  

    Influenced by the above deliberations, the aim of this paper is to utilize AEM based SMC for stabilization of an actual position 

of MAGLEV system and also to find an optimal sliding surface and chatter-free control law for finite time system states’ 

convergence with high precision in the presence of mismatched uncertainties. To our best knowledge, such a control strategy has 

not been investigated for the MAGLEV system in literature. This convex optimization problem is solved by Linear Matrix 

Inequalities (LMIs) and Bilinear Matrix Inequalities (BMIs) through YALMIP [20,21] and SEDUMI toolboxes in MATLAB 

software. Also, the simulation results have been compared with the dynamic SMC (DSMC) presented in [3]. 

    This paper is framed as: In Section 2, the dynamics of MAGLEV system is shown. The procedure for SMC based on LMI is 

described in Section 3. The results of implementation with MATLAB software are shown in Section 4. The conclusion is stated in 

Section 5.   
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II. MATHEMATICAL MODELING OF MAGLEV SYSTEM  

Consider a block diagram of MAGLEV system presented in Fig. 1. It consists of an electromagnet wound with copper wires which 

produces a magnetic force 
eF

 
for holding an object by energizing the windings through coil actuator supervised by the proposed 

control )(tu . The sensor is also incorporated to sense the current position of an object and also acts as an input to controller. 

 
Fig. 1.    Schematic diagram for MAGLEV 

 

The non-linear differential equations describing MAGLEV system can be expressed as [22]: 
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Here, )(tv  denotes the applied voltage (input), rV is the voltage across coil’s resistance R , LV is the voltage across coil’s 

inductance L . Whereas, i  is current through the coil of electromagnet. The electromagnetic force
eF  developed by varying current 

through electromagnet needs to be counterbalanced by gravitational force gF . M denotes the mass of an object, x  defines the 

position of the object, g is the gravitational constant and Q is the magnetic force constant.  

Then, the non-linear equation for the coil’s inductance is represented by: 

                                                                            x

Q
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)( 0                                             (2.2)                                                               

where 0L
 

is a system variable denoting an electromagnet coil inductance. Assume the system state vector as: 

   TT
ixxxxxX  321 , the state space model of MAGLEV can be written as :
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(2.3)                                                                        

The aforementioned non-linear state space model is affine in control input u(t) which is of the form : 

                                              

)()()()()()()( tdtuXgtuXgXfXfX                  (2.4) 

where 0)(),( XgXf are non-linear system functions and )(),( XgXf 
 
and )(td  represent system perturbations and 

external disturbances, respectively. Now, this non-linear system is linearized about equilibrium:  TeX 75.00012.0
.
The 

state space representation of the third order uncertain linear system is given as: 
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Here, state error, eXXX  , A  is 33 system matrix, E  is 23  gains of disturbance signals, B is 13 input matrix, u is 

11  sliding mode control signal, X is 13  state vector and )()()()(),( tdtuXBXAXth 
 
denotes 12 bounded 

and lumped mismatched Quasi-Lipschtiz uncertainties/ disturbances, whose bound is given by: 

                                                                 
XRXhhRh x

T

h

T  0                                      (2.6)
 

where xR  and hR  are positive definite matrices and 0h  is a positive constant.  
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Since, the task of non-linear system is to track the commanded signal and the linear system state vector will be composed of error 

states and should be regulated to zero. The values of the various parameters of the system are shown in Table 1.

 

 

Table 2.1: Values of MAGLEV system parameters 

 

 

 

 

 

 

 

 

III. CONTROLLER DESIGN  

3.1 Controller Design 

The main intention of this paper is to provide a robust control law which will drive all the error states including deviation in 

MAGLEV position, velocity and current from equilibrium to zero in the presence of external disturbances and mismatched 

uncertainties in finite time
r

t . 
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3.2 Preliminary Step for Application of the Proposed Method 
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where 0,1,3 2  Bmn  and this matrix will reduce the system dynamics to regular form: 
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are the modified system matrices. The sliding surface describing the regulation objective is selected as: 

0)( 211   CCts                                                     (3.4) 

where  11 CC   should be Hurwitz, which will be found from convex optimization problem presented in next section. The 

general sliding mode control law is a combination of continuous and discontinuous controls. Therefore in (12), the first term denotes 

the equivalent control law for sliding phase computed by taking the first order derivative of sliding surface (11) and second term 

gives the discontinuous control meant for the reaching phase. The discontinuous control gain )(K  is obtained through the same 

optimization process which also avoids the overestimation to counteract uncertainties and thus chattering would be negligible. 
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where 01 BC  to avoid control singularity problem and  RaK T)(   is a constant gain matrix with positive bounded 

constant a , and matrix 
33RR such that: 

bRaaa  0,0 maxmin

                                                           (3.6) 

 

 

 

 

Parameters Value Units 

M  04.0  Kg  

g  8.9  2/ sm  

L  0092.0  H  

R  2.1    

Q  0001.0  - 

Initial conditions:

0X  
 597.001.003.0   

[m,m/s,A] 
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3.3 Ellipsoid Method 

Definition: The ellipsoid given by: 

,1)(  XPXP T   0P , 
3RX                                              (3.7) 

is said to be invariant if any state trajectory starting in ellipsoid stays in it for later time t > 0. Also, it is called as attractive if a state 

trajectory starting outside this ellipsoid converges to this ellipsoid. The equation (14) describes the smaller size of ellipsoid with 

larger P.  

   Therefore, the optimization problem becomes: )(min)(max 1 PtracePtrace minimizes the sum of squares of semi-axis of 

ellipsoid. 

3.4 SMC Design based on AEM 

Designing a SMC based on attractive ellipsoid method (AEM) requires three steps. Firstly, the parameters of sliding surface are 

selected for desired control objective (8). Secondly, the control law is devised to drive the closed loop system dynamics to vicinity 

of origin inside an attracting ellipsoid. Thirdly, the system states are made to reach the smallest invariant ellipsoid. To achieve this 

control objective, a convex optimization problem in two- parametric form of LMIs (and BMIs) has been solved by using Theorem 

1. Readers can refer to [16,17] for Lyapunov’s stability analysis. Let CPY  and the control problem becomes: minimize trace 

(Z) such that the inequalities in theorem 1 are satisfied. 

 

Theorem 1 (Theorem 4 [16]) : LMIs obtained by S- procedure for fixed  ,, 21 , give the solutions ),,,,,( RPYZMa : 
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Here,  ,,a  are positive numbers, R  is positive semi-definite matrix, bounded control parameters, P denotes the 22 positive 

definite matrix and Y is 33 positive definite matrix.  

  This gives the quasi-minimal attractive (invariant) ellipsoid )( 1Z  for the system. The sliding surface coefficient vector is given 

by:
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Proof: The proof of the afore-described theorem has been comprehended in [16,17]. 

The optimal sliding motion is given by: 
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The complete optimization algorithm is described as: 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm: Optimization Process 

1: Transform the model of magnetic levitation system to regular 

form using (9). 

2: Find the optimal solutions using YALMIP and SEDUMI 

toolboxes with objective function chosen as trace(Z) and 

constraints described in theorem 1. 

3: Compute the control law by substituting the obtained optimal 

solutions using (12). 

4: Determine the optimal sliding motion using (19). 
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IV. SIMULATIONS AND RESULTS 

 

In this section, MATLAB simulation work is presented with the YALMIP and SEDUMI toolboxes. The differential equations (19) 

are solved with ode23 solver with the tolerance of 1e-2, for obtaining respective time domain responses. The efficiency of the 

proposed method is compared with the dynamic sliding mode control (DSMC) presented in [3] in the presence of mismatched 

uncertainties (20). 
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with gain vector chosen as: 
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Various fixed controller parameters are given in Table 2.  
 

Table 4.1: Values of Proposed Controller parameters 
                                                     

 

 

 

 

 

 

 

 

 

 

The problem is solved with solution 7153.0)( Ztrace .  The coefficient vector of a sliding surface is obtained as: 

 0092.00507.00761.181 C                                (4.3) 

     Fig. 2 shows the 3D convergence of error state trajectories to the invariant ellipsoid. Fig. 3 (a) and (b) show the comparison 

between the two techniques for MAGLEV object’s position. It can be analyzed that the position error is regulated to zero in 0.05s 

with the proposed method. Whereas, DSMC takes 3s for zero position error with peak of 1.7 m due to its inability to handle the 

mismatched uncertainties. Fig. 4(a) and (b) give the time domain responses for object’s velocity. The proposed method has rapidly 

stabilized the object’s velocity in 0.05s.  

    Fig. 5 (a) and (b) show that the proposed technique has also outperformed DSMC in terms of the current tracking error profile. 

The peak value of current with the proposed method (0.1A) is much lower than that of DSMC (6800A). It reduces heating losses 

as well as actuator size. Therefore, the complexity as well as cost of the system will be reduced.  

     Fig. 6 (a) and (b) give the convergence of the sliding variable versus time. The proposed method allows the convergence of 

sliding variable to zero in finite time (0.05s) without any chattering and low peak overshoots as compared to DSMC (3s). Also, Fig. 

7 (a) and (b) show the lesser overshoots and chattering free control effort with the presented method than DSMC. Hence, it has 

been verified that the proposed method gives high time domain performances as compared to the dynamic SMC (DSMC).  

          

 

 
Fig. 2.  3D plot for convergence of state trajectories with the proposed method 
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(a)                                                          (b) 

Fig. 3. Position tracking error with (a) proposed method and (b) DSMC [3] with mismatched uncertainties 

 

 
 

(a)                                                          (b) 

Fig. 4. Velocity tracking error with (a) proposed method and (b) DSMC [3] with mismatched uncertainties 

 

 
 

(a)                                                          (b) 

Fig. 5. Current tracking error with (a) proposed method and (b) DSMC [3] with mismatched uncertainties 

 

 
(a)                                                          (b) 

Fig. 6. Sliding surface convergence with (a) proposed method and (b) DSMC [3] with mismatched uncertainties 

 

 

 
(a)                                                          (b) 

Fig. 7. Control effort with (a) proposed method and (b) DSMC [3] with mismatched uncertainties 
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V. CONCLUSIONS 

 

    An attractive ellipsoid based sliding mode control has been implemented for the magnetic levitation system. MATLAB 

simulations are carried out with YALMIP and SEDUMI toolboxes for solving convex optimization based LMIs. The time domain 

responses with the proposed method are compared with the dynamic sliding mode control. It has also been verified that the high 

performance specifications such as faster convergence, zero steady state error and chatter-free control in the presence of mismatched 

uncertainties are achieved with the proposed method. In future, the proposed methodology can also be applied to various other kinds 

of electrical and mechanical systems for their stabilization and tracking control objectives. 
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